Alle Artikel mit dem Schlagwort: Energiedichte

So stellt sich der Thales-Konzern die Fusion aus Luft- und Raumfahrt vor: Pseudosatelliten wie dieser "Stratobus" sollen in der Stratosphäre kreuzen - und brauchen dafür weit bessere Energiespeicher als heute verfügbar. Visualisierung: Thales Alenia Space / E. Briot

Schweflige Superbatterien für stolze Stratobusse

Forscher aus Dresden und Australien entwickeln Schwefel-Batterien mit enormer Energiedichte. Clayton/Dresden, 8. Januar 2020. Wenn es nach den Vordenkern von Google, Thales, Esa und anderen Visionären geht, kreuzen bald wieder stolze Luftschiffe weit oben über unseren Köpfen. Nur werden die wohl nicht Zeppeline heißen und Passagiere über den Atlantik bringen: Der französische Technologiekonzern Thales und die europäische Raumfahrt-Agentur Esa beispielsweise planen „Stratobus“-Luftschiffe, die von der Stratosphäre aus jeden Winkel der Welt mit dem Internet verbinden. Diese Luftschiffe sollen von Helium in der äußeren Schicht der Erdatmosphäre gehalten und elektrisch angetrieben werden. Den Strom dafür sollen die Pseudo-Zeppeline mit Solarzellen sammeln – und die Energie für die sonnenlosen Nachtreisen in neuartigen Lithium-Schwefel-Batterien speichern. Ingenieure aus Dresden und dem australischen Clayton haben nun gemeinsam frühe Prototypen solcher Hochleistungs-Akkus entwickelt.

Am Fraunhofer-Keramikinstitut IKTS in Dresden fertigt eine Pilotlinie neue Elektroden für Lithium-Batterien. Foto: Fraunhofer IKTS

Mehr Kraft für deutsche Batterien

Im Projekt „Kasili“ entwickelt Fraunhofer Dresden neue Elektroden für mehr Energiedichte Dresden, 11. November 2019. Künftige Elektrofahrzeuge sollen mit einer Batterieladung bis zu 700 Kilometer weit fahren, Smartphones deutlich seltener aufgeladen werden. Mit diesem Ziel vor Augen wollen deutsche Wissenschaftler nun in der „Forschungsfabrik Batterie“ neuartige Batterien entwickeln, die bei gleichem Volumen mindestens 70 Prozent mehr Energie für Elektrofahrzeuge und Smartphones speichern können als herkömmliche Lithium-Ionen-Lösungen. Im Teil-Projekt „Kasili“ (Strukturmechanische Kathodenadaption für Silizium- und Lithiumwerkstoffe) steuern Experten aus Dresden Schlüsselkomponenten für diese neue Batterie-Generation bei. Die Forscher von Fraunhofer, TU Dresden und Leibniz arbeiten dafür seit dem 1. November 2019 gemeinsam an innovativen Batterie-Elektroden mit hauchdünnen Silizium- oder Lithiumschichten. Die Federführung hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) übernommen.

Professor Michael Stelter und sein Team haben eine eigentlich schon lange bekannte Batterie-Technik mit Keramik-Hightech so weiterentwickelt, dass diese Salz-Nickel-Batterien zu einem preiswerten Energiespeicher für den Massenmarkt werden könnten. Foto (bearbeitet): Heiko Weckbrodt

„Missing Link für die Energiewende”

Fraunhofer-Forscher aus Sachsen und Thüringen entwickeln leistungsstarke Billig-Batterie – und hoffen nun auf Giga-Fabrik in Mitteldeutschland Dresden, 3. Februar 2016. Fraunhofer-Forscher aus Sachsen und Thüringen haben eine alte Batterie-Technik mit modernen Keramiktechnologien zu einem besonders preisgünstigen Energiespeicher weiterentwickelt. Und diese verbesserte Salz-Nickel-Batterie könnte viele Zwischenspeicher-Probleme mit Solar- und Windkraftanlagen in Deutschland lösen, ist Professor Michael Stelter vom Fraunhofer-Institut für Keramische Technologien und Systeme (IKTS) Dresden überzeugt: „Das könnte der Missing Link, also das fehlende Glied für unsere Energiewende sein“, sagt er.

Fraunhofer-Forscher sehen schweflige Zukunft für das eAuto

Dresden, 17.7.2012: Um die Akzeptanz von Elektroautos zu erhöhen, müssen bessere Akkumulatoren her, die die Reichweite der E-Wagen – derzeit meist nur 100 bis 160 Kilometer – spürbar erweitern, darin sind sich Automobilindustrie und Forscher weitgehend einig. Und da mögen die heute verwendeten Lithium-Ionen-Speicher zwar noch Potenzial haben, doch wahrscheinlich werden neue Batterietechnologien nötig sein, um dieses Ziel zu erreichen. „Das Lithium/Schwefel-System verspricht das zukünftige Material für Energiespeichersysteme zu werden“, meinen Forscher des Dresdner Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS).